A BIOACTIVE BENZOINDENONE FROM EICHHORNIA CRASSIPES SOLMS

Marina Della Greca, Rosa Lanzetta, Lorenzo Mangoni, Pietro Monaco, Lucio Previtera*

Dipartimento di Chimica Organica e Biologica, Università Federico II, Via Mezzocannone 16, I-80134 Napoli, Italy

(Received 10 July 1991)

Abstract: The structure 2,5-dimethoxy-4-phenyl-benzoindenone (1) has been attributed to a metabolite from *Eichhornia crassipes* on the basis of its spectroscopic properties. The compound was proved to inhibit the growth of the fungus *Candida albicans*.

In pursuing our search for biologically active compounds from aquatic plants, we have examined *Eichhornia crassipes* Solms, a species whose extracts have been reported to have effects as growth regulators. Beside new oxygenated sterols which reduced the root growth of *Raphanus sativum* L.² we have isolated some new aromatic compounds and in this preliminar paper we report the characterization of 2,5-dimethoxy-4-phenyl-benzoindenone (1) which represents the first example of a benzoindenonic compound isolated from a natural source.

The molecular formula $C_{21}H_{16}O_3$ was attributed to the red oily metabolite on the basis of the molecular peak at m/z 316.1091 in its high resolution mass spectrum and was supported by the ¹H and ¹³C nmr data (Table 1).

The carbonyl absorption at 1733 cm⁻¹ in the IR spectrum was in good agreement with the values reported for indenones bearing electronegative groups at C-2³ and the UV spectrum with bands at 236, 258, 302, 362 and 455 nm conforted the benzoindenonic system⁴.

The ^1H nmr spectrum showed two methyl singlets at δ 3.86 and 4.08, a methine singlet at δ 6.83, four methine doublets at δ 6.90, 7.57, 7.61 and 8.63 beside five further aromatic protons in the 7.34-7.46 ppm range. The protons at δ 6.90 and 7.61 as well as those at δ 7.57 and 8.63 were *ortho* coupled and their arrangement at the C-6 - C-9 positions was deduced by a homonuclear COSY long-range showing correlations between H-6 at δ 6.90 and H-8 at δ 7.57 as well as between H-7 at δ 7.61 and H-9 at δ 8.63. The experiment evidenced two further scalar interactions between the H-6 proton and the methyl at δ 4.08 as well as between the singlet at δ 6.83 and the methyl at δ 3.86. These spatial proximities, confirmed by nOe difference experiments, located a methoxyl group at C-5 and the other one, vicinal to the singlet, on the five-member ring. The subsequent assignment of this methoxyl group at C-2 derived by the chemical shift of the vicinal H-3 proton. In fact the H-2 and H-3 proton resonances in indenone are at δ 5.83 and 7.525; as a methoxyl group upfield shifts the vicinal proton (0.6-0.8 ppm), the value 6.83 ppm is undoubtedly indicative of the assigned position.

The 13 C nmr data, obtained by on-resonance and DEPT experiments, were accounted for by a carbonyl carbon at δ 179.8, eight quaternary, ten methine and two methyl carbons. The chemical shifts of these carbons and the one-bond and long-range 2D heterocorrelations univocally proved the structure 1. In a long-range experiment, obtained by choosing a delay corresponding to 10 Hz C,H coupling, the three bond long-range couplings were evidenced. The H-3 proton showed connettivity with the carbonyl C-1 and significatively, the H-3, H-7 and H-8 protons were correlated to the same carbon at δ 125.7 attributed to the C-3b carbon.

Table 1. NMR Data of Benzoindenone 1 in CDCl₃.

Position	DEPT	δ ¹³ C	H-C one bond	δ ¹ Η	H-C long-range	δ 13C
1	С	179.8		-		-
2	С	152.1		-		-
3	CH	112.0		6.83 s 7	١	24.3,125.7,55.4,179.8
3a	C	143.0		-	1 1	-
3b	С	125.7			!	-
4	С	121.4		- '	! !	-
5	С	157.4		- '	!	-
6	CH	104.7		- r 6.90 d (8.4)	! !	121.4, 126.3
7	CH	130.7		1.61 d (8.4)	!	125.7, 130.7
7a	С	126.3				-
8	CH	130.7		7.57 d (8.0)	<u>.</u>	125.7, 130.7
9	CH	128.3		L8.63 d (8.0)		126.3, 143.0
10	С	124.3)	-
2-OMe	CH ₃	55.4		' 3.86 s	,	152.1
5-OMe	CH ₃	55.9		4.08		157.4

The aromatic H-2'- H-6' protons in the 7.34-7.46 ppm range are correlated to the methine carbons at δ 126.9, 127.9 (x2) and 128.1 (x2). C-1' δ 148.4.

The coupling costants in Hz are reported in parentheses.

Solid lines indicate proton correlations revealed by homonuclear decoupling experiments. Broken lines indicate proton correlations revealed by homonuclear long-range COSY experiments.

The compound 1 was subjected to antimicrobial screening procedures against Gram+, Gram- and the fungus Candida albicans and was found active only against the fungus. The assays were performed according to the diffusion technique for the antibiotic screening⁶ using as reference standards tetracycline, cephamendole and nistatine. The compound was dissolved in DMSO and $100~\mu l$ of a $2\times10^{-3}~M$ solution were applied on a Whatman paper disk and after four days at $22^{\circ}C$ inhibition diameter was measured (73% related to the controls). The cupplate technique was used to determine the minimum inhibitory concentration. $100\mu l$ of solution from $2\times10^{-3}~M$ to $2.5\times10^{-4}~M$ were transfered to 9 mm diameter holes cut into the agar plates. After four days at $22^{\circ}C$ the inibition was still evident (20% related to the controls) with a concentration $5\times10^{-4}~M$.

Acknowledgment: Research was funded by a grant from the Consiglio Nazionale delle Ricerche in the frame of the "Progetto Finalizzato Chimica Fine e secondaria".

References

- 1. Issa, M.A. Can.J.Chem. 1988, 66, 2777.
- 2. Della Greca, M.; Monaco, P.; Previtera, L. Tetrahedron, in press.
- 3. Ivanov, Ch.; Yukhnouski, I. Godishnik Khim. Tekhnol, Inst. 1964, 11, 1; C.A. 65 19084 h.
- 4. Moses, P.; Dahlbom, R. Acta Chem. Scand. 1965, 19, 823.
- 5. Floyd, M.B.; Allen, G.R.Jr. J.Org. Chem. 1970, 35, 2647.
- 6. Montanari, L.; Pavanetto, F.; Mazza, M. Il Farmaco 1981, 36, 856.